Franklin
Staff View
LEADER 09321cam a2200433Ia 4500
005
20220610111920.0
008
080724t20082008si a b 001 0 eng d
001
9944130983503681
020
a| 9789812813848
q| hardback
020
a| 9812813845
q| hardback
035
a| (OCoLC)ocn235837176
035
a| (OCoLC)235837176
035
a| (PU)4413098-penndb-Voyager
040
a| SISPL
b| eng
c| SISPL
d| SISPL
d| BAKER
d| DKC
d| BWX
d| YDXCP
049
a| PAUU
050
4
a| QC861.3
b| .B53 2008
090
a| QC861.3
b| .B53 2008
100
1
a| Blake, David.
0| http://id.loc.gov/authorities/names/nb2011027339
245
1
0
a| Physical principles of meteorology and environmental physics :
b| global, synoptic and micro scales /
c| David Blake, Robert Robson.
264
1
a| Singapore :
b| World Scientific,
c| [2008]
264
4
c| ©2008
300
a| xxv, 261 pages :
b| illustrations ;
c| 23 cm
336
a| text
b| txt
2| rdacontent
337
a| unmediated
b| n
2| rdamedia
338
a| volume
b| nc
2| rdacarrier
504
a| Includes bibliographical references (pages 251-255) and index.
505
0
0
t| Theoretical Foundations
g| 1 --
g| 1
t| The Big Picture
g| 3 --
g| 1.2
t| The Atmospheric Environment
g| 5 --
g| 1.2.1
t| Composition of the Atmosphere
g| 5 --
g| 1.2.2
t| Vertical Structure of the Atmosphere
g| 7 --
g| 1.2.3
t| The Horizontal Picture
g| 9 --
g| 1.2.4
t| Water in the Atmosphere
g| 9 --
g| 1.3
t| Solar Radiation
g| 11 --
g| 1.3.1
t| Solar Constant
g| 11 --
g| 1.3.2
t| Radiative Equilibrium, Atmospheric Solar Energy Budget
g| 12 --
g| 1.4
t| Estimation of Average Terrestrial Temperatures
g| 12 --
g| 1.5
t| Enhanced Greenhouse Effect
g| 15 --
g| 2
t| Atmospheric Thermodynamics and Stability
g| 21 --
g| 2.1
t| Equation of State of the Atmosphere
g| 21 --
g| 2.2
t| Atmospheric Thermodynamics
g| 23 --
g| 2.3
t| Hydrostatic Equilibrium, Height Computations
g| 28 --
g| 2.4
t| Thermodynamic Diagrams
g| 31 --
g| 2.5
t| Examples on the Use of the F160 Diagram
g| 33 --
g| 2.6
t| Lapse Rate and Stability, Adiabatic Lapse Rate
g| 36 --
g| 2.7
t| Saturated Adiabatic Lapse Rate
g| 39 --
g| 2.8
t| Stable Atmosphere, Brunt-Vaisala Frequency
g| 41 --
g| 2.9
t| Model Atmospheres
g| 41 --
g| 2.9.1
t| Homogeneous Atmosphere
g| 41 --
g| 2.9.2
t| Isothermal Atmosphere
g| 42 --
g| 2.9.3
t| Constant Lapse Rate Atmosphere
g| 42 --
g| 3
t| Air Flow on a Rotating Earth
g| 47 --
g| 3.1
t| Introduction, Equation of Motion
g| 47 --
g| 3.2
t| Decoupling of Vertical and Horizontal Motion
g| 51 --
g| 3.3
t| Geostrophic Approximation
g| 52 --
g| 3.4
t| Balanced Curved Flow: Natural Coordinates
g| 53 --
g| 3.4.1
t| Acceleration in Natural Coordinates
g| 53 --
g| 3.4.2
t| Equation of Motion in Natural Coordinates
g| 55 --
g| 3.5
t| Inertial, Cyclostrophic and Gradient Flow
g| 56 --
g| 3.5.1
t| Inertial Flow
g| 56 --
g| 3.5.2
t| Cyclostrophic Flow
g| 57 --
g| 3.5.3
t| Geostrophic Flow
g| 58 --
g| 3.5.4
t| Gradient Flow
g| 58 --
g| 3.5.5
t| Trajectories and Streamlines
g| 60 --
g| 3.6
t| Frictional Effects
g| 60 --
g| 3.7
t| Vertical Variation of the Geostrophic Wind
g| 62 --
g| 3.7.1
t| Isobaric Coordinates
g| 62 --
g| 3.7.2
t| Wind Shear and Thermal Wind Equation
g| 64 --
g| 3.7.3
t| Implications of the Equations
g| 65 --
g| 4
t| Divergence, Vorticity and Circulation
g| 73 --
g| 4.1
t| Equation of Continuity
g| 73 --
g| 4.2
t| Mechanism of Pressure Change
g| 75 --
g| 4.3
t| Vorticity and Circulation Theorems
g| 77 --
g| 4.4
t| The Vorticity Equation and its Implications
g| 79 --
g| 4.5
t| Potential Vorticity
g| 83 --
g| 4.6
t| Further Comments on Vorticity
g| 84 --
g| 4.7
t| Rossby Waves
g| 85 --
g| 5
t| Boundary Layer Meteorology
g| 91 --
g| 5.2
t| Turbulence in the Atmosphere
g| 91 --
g| 5.3
t| Turbulent Balance Equation
g| 94 --
g| 5.3.1
t| Momentum Balance (Equation of Motion)
g| 96 --
g| 5.3.2
t| Energy Balance
g| 96 --
g| 5.3.3
t| Moisture Balance Equation
g| 96 --
g| 5.4
t| Calculation of Vertical Flux; Flux-Gradient Relationships
g| 97 --
g| 5.5
t| Turbulent Transport Equations
g| 98 --
g| 5.6
t| Surface Boundary Layer
g| 98 --
g| 5.7
t| Momentum Flux, Vertical Wind Profile
g| 99 --
g| 5.8
t| Energy Fluxes at the Earth's Surface
g| 103 --
g| 5.9
t| Planetary Boundary Layer
g| 107 --
g| 5.9.1
t| Heat Transfer in the Planetary Boundary Layer
g| 108 --
g| 5.9.2
t| Wind in the Planetary Boundary Layer
g| 111 --
g| 5.9.3
t| Dispersion of Pollutants from an Elevated Source
g| 113 --
g| 5.10
t| Richardson Number, Obukhov Length
g| 116 --
g| 6
t| Biometeorology, Environmental Biophysics
g| 123 --
g| 6.2
t| Metabolism, Maintenance of Body Temperature
g| 124 --
g| 6.3
t| Molecular Versus Turbulent Transport
g| 125 --
g| 6.4
t| Modes of Heat Transfer
g| 128 --
g| 6.4.1
t| Radiation
g| 128 --
g| 6.4.2
t| Convective Heat Transfer
g| 130 --
g| 6.4.3
t| Evaporation, Latent Heat Exchange
g| 130 --
g| 6.4.4
t| Heat Conduction
g| 131 --
g| 6.5
t| Summary of Formulae and Expression for Total Heat Loss
g| 133 --
g| 6.6
t| The Importance of Latent Heat: Some Examples
g| 133 --
g| 6.6.1
t| Energy Expended in Respiration
g| 134 --
g| 6.6.2
t| Heat loss from a New-Born Infant
g| 136 --
g| 6.7
t| Inside the Organism: When Heat Conduction is Important
g| 137 --
g| 6.7.1
t| Temperature Rise in a Working Muscle
g| 137 --
g| 6.7.2
t| Conduction and Convection
g| 139 --
g| 6.8
t| Transpiration in Plants
g| 141 --
g| 6.8.1
t| Resistance to Diffusion
g| 141 --
g| 6.8.2
t| Leaf Structure
g| 142 --
g| 6.8.3
t| Diffusion from a Circular Orifice, Perforated Screen
g| 142 --
g| 6.8.4
t| Transpiration from Leaves
g| 145 --
g| 6.9
t| Flux Versus Temperature, Fact Versus Fiction
g| 146 --
t| Experiments in the Tropical Boundary Layer
g| 155 --
g| 7
t| Introduction to the Experiments
g| 157 --
g| 7.1
t| Measurements
g| 157 --
g| 7.2
t| A Brief Survey of Eddy Correlation Measurements
g| 161 --
g| 7.2.1
t| Instrumentation
g| 162 --
g| 7.2.2
t| Topography, Vegetation and Geophysical Variability
g| 164 --
g| 8
t| Approaches to Measurement of Net Ecosystem Exchange
g| 169 --
g| 8.2
t| Comparison of Flux Measurement Techniques
g| 170 --
g| 8.2.1
t| Flux Gradient Methods
g| 170 --
g| 8.2.2
t| Eddy Correlation Methods
g| 170 --
g| 8.3
t| Approaches to NEE Measurement
g| 171 --
g| 8.3.1
t| The Balance Equation
g| 171 --
g| 8.3.2
t| The Reynolds Approach
g| 172 --
g| 8.3.3
t| The WPL Approach
g| 173 --
g| 8.3.4
t| The Lee Approach
g| 176 --
g| 8.3.5
t| Reconciling the WPL and Lee Approaches
g| 178 --
g| 9
t| Application of the WPL Method
g| 183 --
g| 9.2
t| Coordinate Frames
g| 183 --
g| 9.2.2
t| Coordinate Rotations
g| 184 --
g| 9.3
t| Fourier Analysis
g| 186 --
g| 9.4
t| Averaging Periods
g| 188 --
g| 9.5
t| Sampling Rates
g| 190 --
g| 9.6
t| Sensor Placement
g| 192 --
g| 9.6.1
t| Sensor Height
g| 192 --
g| 9.6.2
t| Sensor Separation, Flow Distortion and Path Length Averaging
g| 192 --
g| 10
t| Experimental Methods
g| 195 --
g| 10.2
t| Instrumentation
g| 196 --
g| 10.2.1
t| Sonic Anemometer
g| 196 --
g| 10.2.2
t| Infrared Gas Analyser (IRGA)
g| 197 --
g| 10.2.3
t| Datalogger
g| 197 --
g| 10.2.4
t| Flux Measurement System
g| 197 --
g| 10.3
t| Calibration
g| 198 --
g| 10.3.1
t| Sonic Anemometer
g| 198 --
g| 10.3.2
t| Infrared Gas Analyser
g| 199 --
g| 10.4
t| Processing Software
g| 201 --
g| 10.4.1
t| Fourier Analysis
g| 201 --
g| 10.4.2
t| Logger Program
g| 203 --
g| 10.4.3
t| Analysis Program
g| 203 --
g| 10.5
t| Error Analysis
g| 206 --
g| 10.6
t| Experimental Sites
g| 208 --
g| 11
t| Results and Analysis
g| 211 --
g| 11.2
t| Time Series Analysis
g| 212 --
g| 11.2.1
t| Rainforest
g| 212 --
g| 11.2.2
t| Sugar Cane
g| 219 --
g| 11.3
t| Effects of Averaging Period and Sampling Rate Variations on Flux Measurements
g| 228 --
g| 11.3.1
t| Averaging Periods
g| 228 --
g| 11.3.2
t| Sampling Rates
g| 229 --
g| 11.4
t| Fluxes
g| 231 --
g| 11.5
t| Error Analysis
g| 239 --
g| 11.6
t| Summary of Experimental Issues
g| 239 --
g| 11.7
t| Main Results
g| 241 --
g| 11.8
t| Recommendations for Further Study
g| 242 --
g| 11.8.1
t| Allowance for Convergence in the Horizontal Wind
g| 242 --
g| 11.8.2
t| Energy Balance Closure
g| 242 --
g| 11.8.3
t| Transfer Functions
g| 242 --
g| 11.8.4
t| Equipment Mounting
g| 243 --
g| 11.8.5
t| Detrending
g| 243 --
g| 11.8.6
t| Software
g| 243 --
g| Appendix A
t| Some Useful Numerical Values
g| 245 --
g| Appendix B
t| Saturated Vapour Density and Pressure of H[subscript 2]O
g| 247 --
g| Appendix C
t| Vector Identities
g| 249.
520
a| This book starts with the big picture, relating Einstein's famous mass-energy formula E = mc[superscript 2] to the global climate; and then proceeds to examine the structure and dynamics of the atmosphere, from the synoptic scale through to the microscale, including the interaction of living things with their environment. It covers a range of topics from the laboratory to the field, including the analysis of thermodynamic diagrams and dispersion of pollutants, simple micrometeorological experiments on a sports field, as well as a detailed study on the measurement of carbon dioxide exchange between the atmosphere and tropical rainforests.
520
8
a| Straightforward, simple models and short arguments are used wherever possible to promote physical understanding, for example, in the discussion of the greenhouse effect. The aim is to bring the reader to the point where he or she is able to understand and analyze weather charts in daily use around the world; obtain an appreciation of current experimental techniques; and also make informed, quantitative estimates in relation to current issues surrounding the current debate on climate change.
650
0
a| Meteorology.
0| http://id.loc.gov/authorities/subjects/sh85084334
650
7
a| Meteorology.
2| fast
0| http://id.worldcat.org/fast/1018441
650
0
a| Physics.
0| http://id.loc.gov/authorities/subjects/sh85101653
650
7
a| Physics.
2| fast
0| http://id.worldcat.org/fast/1063025
650
0
a| Environmental sciences.
0| http://id.loc.gov/authorities/subjects/sh92004048
650
7
a| Environmental sciences.
2| fast
0| http://id.worldcat.org/fast/913474
700
1
a| Robson, Robert.
0| http://id.loc.gov/authorities/names/n97012181
902
a| MARCIVE 2022
945
a| 544403
b| 2008-10-29
c| 75
c| 61.5
g| 1
i| PromptCat
994
a| 92
b| PAU