Franklin
Staff View
LEADER 12451cam a2200505 i 4500
005
20220609135325.0
008
150626t20162016fluabf bf 001 0 eng
001
9968393863503681
010
a| 2015018961
020
a| 9781498704335
q| (alkaline paper)
020
a| 1498704336
q| (alkaline paper)
024
8
a| 99965603124
035
a| (OCoLC)ocn932261922
035
a| (PUVoyagerBIBID)6839386
035
a| (OCoLC)932261922
035
a| (PU)6839386-penndb-Voyager
040
a| DLC
b| eng
e| rda
c| STF
d| YDXCP
042
a| pcc
049
a| PAUU
050
0
0
a| G70.4
b| .L38 2016
082
0
0
a| 621.36/78
2| 23
100
1
a| Lavender, Samantha,
e| author.
0| http://id.loc.gov/authorities/names/n2015040164
245
1
0
a| Practical handbook of remote sensing /
c| Samantha Lavender, PhD, Andrew Lavender.
264
1
a| Boca Raton :
b| CRC Press, Taylor & Francis Group,
c| [2016]
264
4
c| ©2016
300
a| xxxii, 212 pages, 24 unnumbered pages of plates :
b| illustrations (some color), maps (some color) ;
c| 23 cm
336
a| text
b| txt
2| rdacontent
337
a| unmediated
b| n
2| rdamedia
338
a| volume
b| nc
2| rdacarrier
504
a| Includes bibliographical references and index.
505
0
0
g| 1
t| What Is Remote Sensing?
g| 1 --
g| 1.1
t| Definition of Remote Sensing
g| 1 --
g| 1.2
t| History of Remote Sensing
g| 2 --
g| 1.3
t| Principles of Remote Sensing
g| 3 --
g| 1.4
t| Usefulness of Remote Sensing
g| 4 --
g| 1.5
t| Challenges of Remote Sensing
g| 5 --
g| 1.6
t| Summary and Scope of the Book
g| 6 --
g| 1.7
t| Key Terms
g| 7 --
t| References
g| 7 --
g| 2
t| How Does Remote Sensing Work?
g| 9 --
g| 2.1
t| Principles of Satellite Remote Sensing
g| 9 --
g| 2.2
t| What the Sensor Measures in Remote Sensing
g| 11 --
g| 2.3
t| EM Spectrum
g| 13 --
g| 2.4
t| How Do Sensors Take Measurements?
g| 15 --
g| 2.5
t| Spatial, Spectral, and Temporal Resolutions
g| 15 --
g| 2.5.1
t| Spatial Resolution of Data
g| 15 --
g| 2.5.2
t| Spectral Resolution of Data
g| 17 --
g| 2.5.3
t| Temporal Resolution of Data
g| 19 --
g| 2.5.4
t| Resolution Compromises
g| 19 --
g| 2.6
t| Summary
g| 20 --
g| 2.7
t| Key Terms
g| 20 --
t| References
g| 20 --
g| 3
t| Data Available from Remote Sensing
g| 21 --
g| 3.1
t| Optical Data
g| 21 --
g| 3.1.1
t| Passive: Visible and Infrared
g| 21 --
g| 3.1.2
t| Active: Lidar
g| 22 --
g| 3.2
t| Microwave Data
g| 23 --
g| 3.2.1
t| Passive: Radiometer
g| 23 --
g| 3.2.2
t| Active: Scatterometer
g| 23 --
g| 3.2.3
t| Active: Altimeter
g| 23 --
g| 3.2.4
t| Active: Synthetic Aperture Radar
g| 24 --
g| 3.3
t| Distinction between Freely Available Data and Commercial Data
g| 25 --
g| 3.4
t| Where to Find Data
g| 27 --
g| 3.5
t| Picking the Right Type of Data for a Particular Application
g| 28 --
g| 3.6
t| Summary
g| 29 --
g| 3.7
t| Key Terms
g| 29 --
g| 4
t| Basic Remote Sensing Using Landsat Data
g| 31 --
g| 4.1
t| Notation Used for Practical Exercises within the Book
g| 31 --
g| 4.2
t| History of Landsat
g| 32 --
g| 4.3
t| Summary of the Landsat Missions
g| 32 --
g| 4.4
t| Different Level? of Data Available
g| 34 --
g| 4.5
t| Accessing the Level 1 Landsat Data
g| 35 --
g| 4.6
t| Selecting the Level 1 Landsat Data to Download
g| 35 --
g| 4.7
t| Worldwide Reference System
g| 38 --
g| 4.8
t| Downloading the Level 1 Landsat Data
g| 39 --
g| 4.9
t| Basic Viewing and Using the Landsat Data
g| 40 --
g| 4.10
t| Landsat Calibration and Anomalies
g| 40 --
g| 4.10.1
t| Scan Line Corrector within Landsat 7 ETM+
g| 41 --
g| 4.10.2
t| Bright Pixels
g| 41 --
g| 4.10.3
t| Cloud Cover Percentage
g| 42 --
g| 4.11
t| Practical Exercise: Finding, Downloading, and Viewing Landsat Data
g| 42 --
g| 4.12
t| Summary
g| 44 --
g| 4.13
t| Online Resources
g| 44 --
g| 4.14
t| Key Terms
g| 45 --
t| References
g| 45 --
g| 5
t| Introduction to Image Processing
g| 47 --
g| 5.1
t| What Is an Image and How Are They Acquired?
g| 47 --
g| 5.2
t| Image Properties
g| 49 --
g| 5.3
t| Why Are Remotely Sensed Images Often Large in Size?
g| 51 --
g| 5.4
t| Image Processing Technique: Contrast Manipulation/ Histogram Stretching
g| 52 --
g| 5.5
t| Image Processing Technique: Filtering Pixels
g| 54 --
g| 5.6
t| Image Processing Technique: Applying Algorithms and Color Palettes
g| 56 --
g| 5.7
t| Summary
g| 57 --
g| 5.8
t| Key Terms
g| 57 --
g| 6
t| Practical Image Processing
g| 59 --
g| 6.1
t| Image Processing Software
g| 59 --
g| 6.2
t| Installing the SNAP
g| 60 --
g| 6.3
t| Introduction to the SNAP
g| 61 --
g| 6.4
t| The Geometry of Landsat Level 1 Data
g| 62 --
g| 6.5
t| Landsat Level 1 GeoTIFF Files
g| 63 --
g| 6.6
t| Downloading the Level 1 GeoTIFF Data
g| 65 --
g| 6.7
t| Importing Landsat Level 1 Data into SNAP
g| 67 --
g| 6.8
t| Practical Image Processing: Creating Simple Color Composites
g| 67 --
g| 6.9
t| Practical Image Processing: Creating a Subset
g| 70 --
g| 6.10
t| Practical Image Processing: Contrast Enhancement through Histogram Stretching
g| 71 --
g| 6.11
t| Practical Image Processing: Color Palettes
g| 72 --
g| 6.12
t| Practical Image Processing: Applying a Filter
g| 74 --
g| 6.13
t| Practical Image Processing: Applying the NDVI Algorithm
g| 75 --
g| 6.14
t| Summary
g| 77 --
g| 6.15
t| Online Resources
g| 77 --
g| 6.16
t| Key Terms
g| 78 --
g| 7
t| Geographic Information System and an Introduction to QGIS
g| 79 --
g| 7.1
t| Introduction to GIS
g| 79 --
g| 7.2
t| GIS Software Packages
g| 82 --
g| 7.3
t| Installing QGIS
g| 82 --
g| 7.4
t| Introduction to QGIS
g| 83 --
g| 7.5
t| Importing Remote Sensing Data into QGIS
g| 84 --
g| 7.6
t| GIS Data Handling Technique: Contrast Enhancement/Histogram Stretch
g| 85 --
g| 7.7
t| GIS Data Handling Technique: Combining Images
g| 87 --
g| 7.8
t| GIS Data Handling Techniques: Adding Cartographic Layers
g| 89 --
g| 7.9
t| CRS Adjustments within QGIS
g| 91 --
g| 7.10
t| Saving Images and Projects in QGIS
g| 92 --
g| 7.11
t| Summary
g| 92 --
g| 7.12
t| Online Resources
g| 93 --
g| 7.13
t| Key Terms
g| 93 --
t| References
g| 94 --
g| 8
t| Urban Environments and Their Signatures
g| 95 --
g| 8.1
t| Introduction to Application Chapters of the Book
g| 95 --
g| 8.2
t| Urban Environments
g| 95 --
g| 8.3
t| Introduction to the Optical Signatures of Urban Surfaces
g| 96 --
g| 8.4
t| Introduction to the Thermal Signatures of Urban Surfaces
g| 99 --
g| 8.5
t| Urban Applications
g| 100 --
g| 8.5.1
t| Green Spaces and Urban Creep
g| 100 --
g| 8.5.2
t| Temperature Dynamics
g| 102 --
g| 8.5.3
t| Nighttime Imagery
g| 103 --
g| 8.5.4
t| Air Quality
g| 105 --
g| 8.5.5
t| Subsidence
g| 106 --
g| 8.6
t| Practical Exercise: Spectral and Thermal Signatures
g| 108 --
g| 8.6.1
t| Step One: Downloading, Importing, and Processing Landsat Optical Data to Determine Green Spaces
g| 108 --
g| 8.6.2
t| Step Two: Downloading and Importing MODIS Data to QGIS
g| 110 --
g| 8.6.3
t| Step Three: Combining MODIS Thermal Data with Optical Data from Landsat
g| 111 --
g| 8.6.4
t| Step Pour: Comparing Thermal Data from Landsat and MODIS
g| 111 --
g| 8.6.5
t| Step Five: Example of ASTER Data
g| 112 --
g| 8.7
t| Summary
g| 113 --
g| 8.8
t| Online Resources
g| 113 --
g| 8.9
t| Key Terms
g| 113 --
t| References
g| 114 --
g| 9
t| Landscape Evolution
g| 117 --
g| 9.1
t| Principles of Using Time-Series Analysis for Monitoring Landscape Evolution
g| 117 --
g| 9.2
t| Landscape Evolution Techniques
g| 119 --
g| 9.3
t| Optical Vegetation Indices for Landscape Evolution
g| 120 --
g| 9.4
t| Microwave Data for Landscape Evolution
g| 121 --
g| 9.5
t| Landscape Evolution Applications
g| 122 --
g| 9.5.1
t| Mapping Land Cover
g| 122 --
g| 9.5.2
t| Agriculture
g| 124 --
g| 9.5.3
t| Forestry and Carbon Storage
g| 125 --
g| 9.5.4
t| Fire Detection
g| 127 --
g| 9.6
t| Practical Exercise: Supervised Land Cover Classification
g| 128 --
g| 9.6.1
t| First Stage: Creating the Data Set Ready for Land Classification
g| 128 --
g| 9.6.1.1
t| Step One: Installing Semi-Automatic Classification Plugin
g| 128 --
g| 9.6.1.2
t| Step Two: Importing and Preprocessing the Data
g| 129 --
g| 9.6.1.3
t| Step Three: Creating a False Color Composite
g| 130 --
g| 9.6.1.4
t| Step Four: Choosing Classification Wavebands
g| 132 --
g| 9.6.2
t| Second Stage: Performing a Supervised Land Classification Using Existing Training Sites
g| 132 --
g| 9.6.2.1
t| Step Five: Importing Spectral Signatures
g| 132 --
g| 9.6.2.2
t| Step Six: Importing ROI Shapefiles
g| 134 --
g| 9.6.2.3
t| Step Seven: Classification Algorithm and Preview
g| 134 --
g| 9.6.2.4
t| Step Eight: Whole Scene Classification
g| 135 --
g| 9.6.3
t| Third Stage: Performing a Supervised Land Classification with Your Own Training Sites
g| 136 --
g| 9.6.3.1
t| Step Nine: Creating a Pseudo-True Color Composite
g| 136 --
g| 9.6.3.2
t| Step Ten: Identifying and Selecting Your Own Training Sites
g| 137 --
g| 9.6.3.3
t| Step Eleven: Classification Algorithm and Preview
g| 139 --
g| 9.6.3.4
t| Step Twelve: Whole Scene Classification
g| 140 --
g| 9.7
t| Summary
g| 140 --
g| 9.8
t| Online Resources
g| 141 --
g| 9.9
t| Key Terms
g| 141 --
t| References
g| 142 --
g| 10
t| Inland Waters and the Water Cycle
g| 143 --
g| 10.1
t| Optical and Thermal Data for Inland Waters
g| 143 --
g| 10.2
t| Microwave Data for Monitoring the Water Cycle
g| 146 --
g| 10.2.1
t| Altimetry
g| 146 --
g| 10.2.2
t| Passive Radiometry
g| 147 --
g| 10.3
t| Inland Water Applications
g| 148 --
g| 10.3.1
t| Water Cycle and Wetlands
g| 148 --
g| 10.3.2
t| Soil Moisture Monitoring
g| 149 --
g| 10.3.3
t| Lakes, Rivers, and Reservoirs
g| 150 --
g| 10.3.4
t| Flood Mapping
g| 152 --
g| 10.3.5
t| Groundwater Measurement
g| 152 --
g| 10.4
t| Practical Exercise: Analysis of the Aswan Dam
g| 154 --
g| 10.4.1
t| Step One: Obtaining the SAR Data
g| 155 --
g| 10.4.2
t| Step Two: Loading the SAR Data into QGIS
g| 155 --
g| 10.4.3
t| Step Three: Downloading the Landsat Data from Earth Explorer
g| 155 --
g| 10.4.4
t| Step Four: Importing Landsat Data into QGIS
g| 158 --
g| 10.4.5
t| Step Five: Creating an NDWI Using a Mathematical Function
g| 158 --
g| 10.4.6
t| Step Six: Creating a Pseudo-True Color Composite
g| 159 --
g| 10.4.7
t| Step Seven: Downloading the SRTM DEM Data
g| 160 --
g| 10.4.8
t| Step Eight Loading the SRTM DEM Data into QGIS
g| 161 --
g| 10.4.9
t| Step Nine: Merging the Four SRTM DEM Tiles into a Single Layer
g| 161 --
g| 10.4.10
t| Step Ten: Adding Contour Lines
g| 162 --
g| 10.5
t| Summary
g| 163 --
g| 10.6
t| Online Resources
g| 163 --
g| 10.7
t| Key Terms
g| 164 --
t| References
g| 164 --
g| 11
t| Coastal Waters and Coastline Evolution
g| 167 --
g| 11.1
t| Optical Data
g| 167 --
g| 11.1.1
t| The Color of the Water
g| 167 --
g| 11.1.2
t| Bathymetric Data
g| 171 --
g| 11.2
t| Passive Microwave Signatures from the Ocean
g| 172 --
g| 11.3
t| Coastal Applications
g| 173 --
g| 11.3.1
t| Physical Oceanography That Includes
505
0
0
t| Temperature, Salinity, and Sea Ice
g| 173 --
g| 11.3.2
t| Water Quality, Including Algal Blooms
g| 175 --
g| 11.3.3
t| Mangroves and Coastal Protection
g| 176 --
g| 11.3.4
t| Coastal Evolution, Including Sediment Transport
g| 178 --
g| 11.4
t| Practical Exercise-New York Bight
g| 180 --
g| 11.4.1
t| Stage One: Importing and Processing MODIS L2 Data
g| 180 --
g| 11.4.1.1
t| Step One: Downloading MODIS 12 Data
g| 180 --
g| 11.4.1.2
t| Step Two: Importing the MODIS SST Data into SNAP
g| 183 --
505
8
0
g| 11.4.1.3
t| Step Three: Processing the MODIS-Aqua SST Data
g| 183 --
g| 11.4.1.4
t| Step Four: Importing and Processing the MODIS OC Data in SNAP
g| 184 --
g| 11.4.1.5
t| Step Five: Save the Products
g| 186 --
g| 11.4.2
t| Stage Two: Comparison of MODIS L2 and Landsat Data
g| 186 --
g| 11.4.2.1
t| Step Six: Restarting SNAP and Importing Landsat Data
g| 186 --
g| 11.4.2.2
t| Step Seven: Importing the Previous OC Product
g| 187 --
g| 11.4.2.3
t| Step Eight: Reprojection of the OC Image
g| 187 --
g| 11.4.3
t| Stage Three: MODIS L3 Data
g| 189 --
g| 11.4.3.1
t| Step Ten: Downloading MODIS L3 Data
g| 189 --
g| 11.5
t| Summary
g| 190 --
g| 11.6
t| Online Resources
g| 190 --
g| 11.7
t| Key Terms
g| 191 --
t| References
g| 191 --
g| 12
t| Where to Next?
g| 193 --
g| 12.1
t| Developments in Satellite Hardware
g| 193 --
g| 12.1.1
t| Instruments
g| 193 --
g| 12.1.2
t| Satellite Developments
g| 194 --
g| 12.2
t| Developments in Data Processing
g| 195 --
g| 12.2.1
t| Accessing Online Data Sets
g| 195 --
g| 12.2.2
t| Cloud Processing
g| 196 --
g| 12.2.3
t| Integration
g| 196 --
g| 12.2.4
t| Object-Based Image Analysis
g| 197 --
g| 12.2.5
t| Open Source Software
g| 197 --
g| 12.3
t| Developments in Applications
g| 198 --
g| 12.3.1
t| Citizen Science
g| 198 --
g| 12.3.2
t| Climate Quality Data Sets
g| 198 --
g| 12.3.3
t| Repurposing
g| 199 --
g| 12.4
t| Long-Term Developments for Remote Sensing
g| 199 --
g| 12.5
t| Developing Your Knowledge Further
g| 200 --
g| 12.5.1
t| Examples of Further Reading
g| 201 --
g| 12.6
t| Summary
g| 201 --
g| 12.7
t| Online Resources
g| 202 --
t| References
g| 202.
590
a| Acquired for the Penn Libraries with assistance from the Alumni and Friends Memorial Book Fund.
650
0
a| Remote sensing
v| Handbooks, manuals, etc.
650
7
a| Remote sensing.
2| fast
0| http://id.worldcat.org/fast/1094469
655
7
a| Handbooks and manuals.
2| fast
0| http://id.worldcat.org/fast/1423877
655
7
a| Handbooks and manuals.
2| lcgft
0| http://id.loc.gov/authorities/genreForms/gf2014026109
700
1
a| Lavender, Andrew,
e| author.
0| http://id.loc.gov/authorities/names/n2015040165
710
2
a| Alumni and Friends Memorial Book Fund.
5| PU
856
4
2
3| The Alumni and Friends Memorial Book Fund Home Page
u| http://hdl.library.upenn.edu/1017.12/366295
902
a| MARCIVE 2022
983
a| 99965603124
b| 308009
c| 99965603124
d| Paper
e| MC
g| 1
h| scif
j| oovanp
984
b| 69.95
h| USD
s| 20160108
z| cat 2: Enc lvl 8 or e
994
a| C0
b| PAU