Franklin
Staff View
LEADER 01104nam 2200289 a 4500
001
9977070317203681
005
20200520144314.0
006
m o d |
007
cr#cn|||||||||
008
130514s2012 njua ob 000 0 eng d
020
a| 1-299-46278-2
020
a| 981-4449-95-4
035
a| (CKB)2550000001019262
035
a| (EBL)1168124
035
a| (SSID)ssj0000908615
035
a| (PQKBManifestationID)11582425
035
a| (PQKBTitleCode)TC0000908615
035
a| (PQKBWorkID)10901626
035
a| (PQKB)10423878
035
a| (MiAaPQ)EBC1168124
035
a| (WSP)00002954
035
a| (Au-PeEL)EBL1168124
035
a| (CaPaEBR)ebr10691897
035
a| (OCoLC)841913815
035
a| (EXLCZ)992550000001019262
040
a| MiAaPQ
c| MiAaPQ
d| MiAaPQ
041
a| eng
050
4
a| QC787.P3
b| A67 2012
082
0
0
a| 539.73
245
0
0
a| Applications of superconducting technology to accelerators
h| [electronic resource] /
c| editors, Alexander W. Chao, Weiren Chou.
260
a| [Hackensack] N.J. :
b| World Scientific,
c| c2012.
300
a| 1 online resource (369 p.)
336
a| text
b| txt
337
a| computer
b| c
338
a| online resource
b| cr
490
0
a| Reviews of accelerator science and technology ;
v| v. 5/2002
500
a| Description based upon print version of record.
505
0
a| Contents; Editorial Preface; Overview of Superconductivity and Challenges in Applications Rene Flukiger; 1. Overview of Superconducting Properties; 1.1. Introduction; 1.2. Historical; 1.3. Meissne reflect and penetration length; 1.4. Heat capacity of superconductors; 1.5. The mixed state; 1.6. The Bean critical state model; 1.7. Stabilization criteria for superconducting wires; 1.8. Relation between Jc, Bc2 and Tc; 2. Challenges for Superconducting Materials and Conductors; 2.1. Time between discovery and application; 2.2. Superconducting materials with higher Tc values
505
8
a| 2.2.1. The search for new superconductors 2.3. Superconducting wires and tapes for applications; 2.4. Wires for high field magnets; 2.4.1. Field ranges and challenges; 2.5. Wires for magnets operating in the persistent mode; 2.6. Wires for accelerator magnets; 2.7. Wires for fusion magnets; 2.8. The critical current density; 2.8.1. Pinning strength in LTS compounds; 2.8.2. Pinning strength in HTS compounds; 2.8.3. High energy irradiation of superconductors; 3. Challenges in Superconducting Applications; 3.1. Applications in energy; 3.1.1. Superconducting magnetic energy storage
505
8
a| 3.1.2. Power cables 3.1.3. Fault current limiters; 3.1.4. Motors and generators; 3.2. Applications in medicine; 3.3. Applications in communications; 3.4. Energy storage; 4. Conclusions; References; Superconducting Materials and Conductors: Fabrication and Limiting Parameters Luca Bottura and Arno Godeke; 1. A Perspective on Applied Superconductivity for HEP Magnets; 2. Relevant Parameters for Application in Accelerator Magnets; 2.1. Critical current density; 2.2. Stabilizer; 2.3. Magnetization, flux jumps, AC loss; 2.4. Mechanical properties; 2.4.1. Axial strain sensitivity
505
8
a| 2.4.2. Transverse pressure on cables 2.5. Manufacturing properties; 3. State-of-the-Art Conductors for HEP; 3.1. Nb-Ti; 3.1.1. Discovery and beginnings; 3.1.2. State of the art; 3.1.3. Challenges; 3.2. Nb3Sn; 3.2.1. Discovery and beginnings; 3.2.2. State of the art; 3.2.3. Challenges; 4. Advances in HTS Materials; 4.1. Bi-2212; 4.2. YBCO; 4.3. Further challenges; 5. Superconducting Cables; 6. Summary; Acknowledgments; References; Superconducting Magnets for Particle Accelerators Lucio Rossi and Luca Bottura; 1. Introduction; 2. Main Characteristics of Superconducting Magnets for Accelerators
505
8
a| 2.1. Functions of superconducting magnets 2.2. Magnet design; 2.2.1. Electromagnetic design; 2.2.2. Alternative configurations; 2.2.3. High current density; 2.2.4. Superconductor, load line and margins; 2.2.5. The iron yoke; 2.2.6. Field quality and harmonic content; 2.3. Magnet structure and forces; 2.4. Quench detection and protection; 2.5. Integration; 3. Brief History of Superconducting Magnets for Accelerators; 3.1. Early history; 3.2. Tevatron and Isabelle; 3.3. HERA and UNK; 3.4. RHIC; 3.5. LHC and SSC; 3.5.1. The rise and fall of the giant: SSC; 3.5.2. LHC: "small and smart"
505
8
a| 3.5.3. LHC dipole magnet design
520
a| Over the past several decades major advances in accelerators have resulted from breakthroughs in accelerator science and accelerator technology. After the introduction of a new accelerator physics concept or the implementation of a new technology, a leap in accelerator performance followed. A well-known representation of these advances is the Livingston chart, which shows an exponential growth of accelerator performance over the last seven or eight decades. One of the breakthrough accelerator technologies that support this exponential growth is superconducting technology. Recognizing this major
546
a| English
504
a| Includes bibliographical references.
650
0
a| Particle accelerators.
650
0
a| Superconductors.
655
4
a| Electronic books.
700
1
a| Chao, Alexander W.
700
1
a| Chou, Weiren.
776
z| 981-4449-94-6
906
a| BOOK