Franklin

Wettability at high temperatures [electronic resource] / by Nicolas Eustathopoulos, Michael G. Nicholas, Béatrice Drevet.

Author/Creator:
Eustathopoulos, Nicolas.
Publication:
Amsterdam ; New York : Pergamon, 1999.
Format/Description:
Book
1 online resource (439 p.)
Edition:
1st ed.
Series:
Pergamon materials series ; v. 3.
Pergamon materials series ; v. 3
Status/Location:
Loading...

Options
Location Notes Your Loan Policy

Details

Subjects:
Wetting.
Materials at high temperatures.
Form/Genre:
Electronic books.
Language:
English
Summary:
The purpose of this book is to bring together current scientific understanding of wetting behaviour that has been gained from theoretical models and quantitative experimental observations. The materials considered are liquid metals or inorganic glasses in contact with solid metals or ceramics at temperatures of 200-2000oC. Wetting has been a significant scientific concern for the last two centuries and reference will be made to classical work by nineteenth century scientists such as Dupré, Laplace and Young that was validated by observations of the behaviour of chemically inert
Contents:
Cover; Contents; Series Preface; Preface; Chapter 1. Fundamental equations of wetting; 1.1. Surface and interfacial energies in solid/liquid/vapour systems; 1.2. Ideal solid surfaces; 1.3. Non-ideal solid surfaces; 1.4. Different types of wetting; Chapter 2. Dynamics of wetting by metals and glasses; 2.1. Non-reactive wetting; 2.2. Reactive wetting; Chapter 3. Methods of measuring wettability parameters; 3.1. Sessile drop experiments; 3.2. The wetting balance technique; 3.3. Accuracy of contact angle data; 3.4. Concluding remarks; Chapter 4. Surface energies; 4.1. Data for metals and alloys
4.2. Data for non-metallic compounds4.3. Concluding remarks; Chapter 5. Wetting properties of metal/metal systems; 5.1. A pure liquid metal on its own solid; 5.2. Systems with negligible mutual solubility; 5.3. Systems with significant mutual solubility; 5.4. Effects of alloying elements; 5.5. Systems that form intermetallic compounds; 5.6. Wetting under technical conditions; 5.7. Concluding remarks; Chapter 6. Wetting properties of metal/oxide systems; 6.1. Reactive and non-reactive systems; 6.2. Non-reactive pure metal/ionocovalent oxide systems
6.3. Effect of electronic structure of the oxide6.4. Effects of oxygen; 6.5. Alloying elements; 6.6. Wetting of fluorides; 6.7. Concluding remarks; Chapter 7. Wetting properties of metal/non-oxide ceramic systems; 7.1. Metals on predominantly covalent ceramics; 7.2. Metals on metal-like ceramics; Chapter 8. Wetting properties of metal/carbon systems; 8.1. Non-reactive systems; 8.2. Reactive systems; 8.3. Concluding remarks; Chapter 9. Wetting by glasses and salts; 9.1. The glassy state; 9.2. Wetting behaviour; Chapter 10. Wetting when joining; 10.1. Flow into capillary gaps
10.2. Joining metal components10.3. Joining ceramic components: ceramic-ceramic and ceramic-metal joints; 10.4. Joining by related techniques; 10.5. Effects on mechanical properties; Appendix A. The Laplace equation; Appendix B. Free energy of formation of a meniscus on a vertical plate in the gravitational field; Appendix C. Contact angle hysteresis for heterogeneous solid surfaces; Appendix D. Estimation of the mass of a sessile drop needed for an optimised sLV measurement; Appendix E. Wetting balance: the case of cylindrical solids
Appendix F. Surface energies of cubic diamond structure compoundsAppendix G. Enthalpy of mixing of binary liquid alloys; Appendix H. Secondary wetting; Appendix I. Evaluation of the work of adhesion of Ni on SiC; List of symbols; Selective Index; Acknowledgements
Notes:
Description based upon print version of record.
Includes bibliographical references and index.
Contributor:
Nicholas, Michael G.
Drevet, Béatrice.
ISBN:
1-281-07196-X
9786611071967
0-08-054378-2
OCLC:
476108831