Electrical machine drives control : an introduction / Juha Pyrhönen, Valéria Hrabovcová, R. Scott Semken.

Pyrhönen, Juha, author.
Chichester, West Sussex, England : Wiley, 2016.
1 online resource (527 p.)

Location Notes Your Loan Policy


Electric driving.
Electric motors -- Electronic control.
Electronic books.
Electrical Machine Drives Control: An Introduction; Contents; Preface; Abbreviations and Symbols; 1: Introduction to electrical machine drives control; 1.1 What is an electrical machine drive?; 1.2 Controlled variable speed drives; 1.2.1 DC variable speed drives; 1.2.2 AC variable speed drives; 1.3 Electrical machine drive implementation; 1.4 Controlled electrical drives and energy efficiency; 1.5 The electrical drive as an element of a controlled industrial process; References; 2: Aspects common to all controlled electrical machine drive types
2.1 Pulse width modulation converter electrical motor drive2.2 Converter interface to power source; 2.3 Fundamental mechanics; 2.4 Basic mechanical load types; 2.5 Proportional-integral-derivative controller in electrical drives; 2.6 The speed, torque, or position control of an electrical drive; 2.7 Control time rates and embedded system principles; 2.8 Per-unit values; 3: The fundamentals of electric machines; 3.1 Energy conversion in electric machines; 3.2 Industrial machine windings; 3.3 Effective winding turns and spatial harmonics; 3.4 Induction machine rotors; 3.5 The damper winding
3.6 AC winding systems3.7 DC machine windings; 3.8 The brushless DC machine; 3.9 The magnetic circuit of an electric machine; 3.10 Motor voltage, flux linkage, flux, field weakening, and voltage reserve; 3.11 Motors in power-electronic electrical drives; References; 4: The fundamentals of space-vector theory; 4.1 Introduction to the space vector for current linkage; 4.1.1 Mathematical representation of the space vector; 4.1.2 Two-axis representation of the space vector; 4.1.3 Coordinate transformation of the space vector; 4.2 Space-vector equivalent circuits and the voltage-vector equations
4.3 Space-vector model in the general reference frame4.4 The two-axis model; 4.5 Application of space-vector theory; References; 5: Torque and force production and power; 5.1 The Lorentz force; 5.2 The general equation for torque; 5.3 Power; 5.4 Reluctance torque and co-energy; 5.5 Reluctance torque and the cross-field principle in a rotating field machine; 5.6 Maxwell's stress tensor in the definition of torque; References; 6: Basic control principles for electric machines; 6.1 The control of a DC machine; 6.2 AC machine control basics; 6.3 Vector control of AC motors
6.4 Direct flux-linkage control and direct torque control6.4.1 The basis of direct torque control; 6.4.2 DFLC implementation; 6.4.3 Shortcomings of direct flux-linkage control; 6.5 Improving DFLC to achieve DTC; 6.5.1 Current model correction; 6.5.2 Stator flux-linkage eccentricity correction; 6.6 Other control principles; References; 7: DC and AC power electronic topologies - modulation for the control of rotating-field motors; 7.1 The thyristor bridge as a power-electronic drive component; 7.2 The cycloconverter; 7.3 The load commutated inverter drive
7.4 Voltage source inverter power stages
Description based upon print version of record.
Includes bibliographical references at the end of each chapters and index.
Description based on print version record.
Hrabovcová, Valeria, author.
Semken, Scott, author.