Franklin

Complex plasmas and colloidal dispersions : particle-resolved studies of classical liquids and solids / Alexei Ivlev [and others].

Author/Creator:
Ivlev, Alexei.
Publication:
Singapore ; Hackensack, NJ : World Scientific, ©2012.
Format/Description:
Book
xv, 320 pages : illustrations ; 23 cm.
Series:
Series in soft condensed matter ; v. 5.
Series in soft condensed matter ; vol. 5
Status/Location:
Loading...

Get It

Details

Subjects:
Dusty plasmas.
Colloids.
Contents:
2 Basic Properties of Complex Plasmas 9
2.1 Charging of Particles 9
2.1.1 Collection of electrons and ions in isotropic plasmas 10
2.1.2 Effect of an external electric field 14
2.1.3 Other mechanisms of charging 15
2.2 Interaction Between Microparticles 15
2.2.1 Electrostatic mechanisms in isotropic plasmas 15
2.2.2 Effect of an external electric field 18
2.2.3 Other mechanisms of interaction 20
2.3 Momentum Exchange Between Species 22
2.4 Major External Forces 24
3 Basic Properties of Colloidal Dispersions 29
3.1 One-Body Properties 30
3.1.1 Dynamics 30
3.1.2 Charging of colloids 32
3.2 Two-Body Properties: Pair Interactions and Stability 34
3.2.1 One-component approach and many-body effects 36
3.2.2 Non-acqueous solvents: weak charging, steric stabilization, and experimental hard spheres 37
3.2.3 Colloidal microgels 38
3.3 Interactions Between Different Species 39
3.4 Hydrodynamic Interactions 41
3.5 Major External Fields 43
3.5.1 Confinement 43
3.5.2 Gravity 44
3.5.3 DC electric fields 44
3.5.4 AC electric and magnetic fields 45
3.5.5 Optical fields 46
3.5.6 Shear 47
4 Complex Plasmas and Colloidal Dispersions: Similarity and Complementarity 49
4.1 Important Dimensionless Parameters 50
4.1.1 Complex plasmas 50
4.1.2 Colloidal dispersions 52
4.2 Dynamic Regimes: Role of the Background 53
4.2.1 Kinetics in the Newtonian and Brownian regimes 55
4.2.2 Crossover between the dynamic regimes 58
4.2.3 Influence of particles on surrounding fluid 63
4.3 Role of Nonconservative Interactions 64
4.3.1 Wake-mediated interactions 64
4.3.2 Hydrodynamic interactions 68
4.3.3 Variable charges 71
4.4 Summary 72
5 Overview of Experimental Methods 75
5.1 Complex Plasmas 75
5.1.1 RF discharges 75
5.1.2 DC discharges 83
5.1.3 Other types of complex plasmas 86
5.2 Colloidal Dispersions 87
5.2.1 Preparation of colloidal dispersions 88
5.2.2 Optical/confocal microscopy 89
5.3 Real Space Analysis 92
5.3.1 Spatial particle tracking 93
5.3.2 Tracking in time 94
5.3.3 Non-equilibrium systems 94
5.3.4 Recent developments 95
6 Simple Liquids 97
6.1 Liquid Structure 97
6.2 Liquid Dynamics 99
6.3 Liquid-Vapor Phase Transition 103
6.4 Summary 108
7 Liquid-Solid Phase Transitions 109
7.1 Equilibrium Phase Diagram 111
7.1.1 3D systems 111
7.1.2 2D systems 114
7.2 Liquid-Solid Interfaces and Kinetics of 3D Transitions 118
7.2.1 Liquid-solid interface in equilibrium 119
7.2.2 Homogeneous versus heterogeneous nucleation 120
7.2.3 Kinetics of phaselets 124
7.2.4 Grain-boundary melting 125
7.3 Kinetic Processes in 2D Crystals 126
7.3.1 Scaling laws of 2D crystallization 126
7.3.2 Dynamics of dislocations 131
7.4 Confined Systems 135
7.4.1 Crossover between 3D and 2D melting 135
7.4.2 Crystalline structures in slit confinement 137
7.4.3 Other types of confinement 144
7.5 Summary 146
8 Binary Mixtures 149
8.1 Static Liquid Structure 149
8.2 Crystallization 150
8.2.1 3D systems 151
8.2.2 2D systems 155
8.3 Fluid Demixing 162
8.3.1 Phase equilibrium 162
8.3.2 Demixing kinetics 165
8.3.3 Limitations of mean-field approach 169
8.3.4 Particle-resolved studies 170
8.4 Summary 176
9 Slow Dynamics 177
9.1 Principal Characteristics and Concepts 179
9.1.1 Supercooled liquids 179
9.1.2 Dynamic heterogeneity and dynamic length scales 181
9.1.3 Boson peaks 182
9.1.4 Glass transition and soft matter 183
9.2 Basic Theories of Liquid-to-Glass Transition 184
9.2.1 Adam-Gibbs theory 184
9.2.2 Random first-order/mosaic theory 185
9.2.3 Mode coupling theory 186
9.3 Real-Space Analysis of Supercooled Liquids 188
9.4 Real-Space Analysis of Gels 190
9.5 Local Structure and Dynamic Arrest 192
9.6 Aging of Glasses 195
9.7 Summary 196
10 Driven Systems 199
10.1 Stable Shear Flows 199
10.2 Rheology 203
10.2.1 Theoretical approaches 204
10.2.2 Comparison with experiments and simulations 208
10.3 Heat Transport 212
10.4 Sedimentation and Basic Hydrodynamic Instabilities 215
10.4.1 Sedimentation 215
10.4.2 Rayleigh-Taylor instability 218
10.4.3 Shear-induced instabilities 219
10.5 Non-Equilibrium Phase Transitions 223
10.5.1 Laning 223
10.5.2 Banding 233
10.6 Motion of Particles in Channels 235
10.7 Summary 240
11 Anisotropic Interactions 243
11.1 Interactions Tunable by External Fields 243
11.1.1 Uniaxial fields 243
11.1.2 Multiaxial fields 252
11.2 Anisotropic Particles 253
11.3 Summary 261
12 Outlook 263.
Notes:
Includes bibliographical references (pages 277-316) and index.
Local notes:
Acquired for the Penn Libraries with assistance from the Emma Louise McClellan Fund.
Contributor:
Emma Louise McClellan Fund.
ISBN:
9789814350068
9814350060
OCLC:
707966885