Python machine learning tips, tricks, and techniques [electronic resource] / [produced by Packt Publishing].

Birmingham, England : PACKT Publishing, 2018.
1 online resource (167 minutes)

Location Notes Your Loan Policy


Other Title:
Academic Video Online.
Python (Computer program language).
Machine learning.
Instructional films.
In English.
System Details:
video file
Transform your simple machine learning model into a cutting edge powerful version. About This Video: Learn from a Kaggle competition master and a Team Lead at the largest search engine company in Russia - a great mixture of competition experience and Industrial knowledge. Learn the techniques currently used among Kaggle top-tier competitors and best practices in real-life projects to upgrade your skills. We guide you through supervised learning from basic linear to ensemble models, by extending the capabilities of your ML system to build high-performance models. In Detail: Machine learning allows us to interpret data structures and fit that data into models to identify patterns and make predictions. Python makes this easier with its huge set of libraries that can be easily used for machine learning. In this course, you will learn from a top Kaggle master to upgrade your Python skills with the latest advancements in Python. It is essential to keep upgrading your machine learning skills as there are immense advancements taking place every day. In this course, you will get hands-on experience of solving real problems by implementing cutting-edge techniques to significantly boost your Python Machine Learning skills and, as a consequence, achieve optimized results in almost any project you are working on. Each technique we cover is itself enough to improve your results. However; combining them together is where the real magic is. Throughout the course, you will work on real datasets to increase your expertise and keep adding new tools to your machine learning toolbox. By the end of this course, you will know various tips, tricks, and techniques to upgrade your machine learning algorithms to reduce common problems, all the while building efficient machine learning models. All the code and supporting files for this course are available on GitHub.
Presenter, Valeriy Babushkin.
Title from resource description page (viewed April 18, 2019).
Packt Publishing, production company.
Alexander Street Press.
Other format:
DVD version:
Access Restriction:
Restricted for use by site license.