Advanced Lectures on Machine Learning [electronic resource] : Machine Learning Summer School 2002, Canberra, Australia, February 11-22, 2002, Revised Lectures / edited by Shahar Mendelson, Alexander J. Smola.

Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2003.
1 online resource (X, 266 pages)
1st ed. 2003.
Computer Science (Springer-11645)
Lecture notes in computer science 0302-9743 ; 2600
Lecture Notes in Computer Science, 0302-9743 ; 2600
Contained In:
Springer eBooks

Location Notes Your Loan Policy


Artificial intelligence.
Local subjects:
Artificial Intelligence. (search)
Science, Humanities and Social Sciences, multidisciplinary. (search)
Computation by Abstract Devices. (search)
Algorithm Analysis and Problem Complexity. (search)
System Details:
text file PDF
Machine Learning has become a key enabling technology for many engineering applications and theoretical problems alike. To further discussions and to dis- minate new results, a Summer School was held on February 11-22, 2002 at the Australian National University. The current book contains a collection of the main talks held during those two weeks in February, presented as tutorial chapters on topics such as Boosting, Data Mining, Kernel Methods, Logic, Reinforcement Learning, and Statistical Learning Theory. The papers provide an in-depth overview of these exciting new areas, contain a large set of references, and thereby provide the interested reader with further information to start or to pursue his own research in these directions. Complementary to the book, a recorded video of the presentations during the Summer School can be obtained at http://mlg. anu. edu. au/summer2002 It is our hope that graduate students, lecturers, and researchers alike will ?nd this book useful in learning and teaching Machine Learning, thereby continuing the mission of the Summer School. Canberra, November 2002 Shahar Mendelson Alexander Smola Research School of Information Sciences and Engineering, The Australian National University Thanks and Acknowledgments We gratefully thank all the individuals and organizations responsible for the success of the workshop.
A Few Notes on Statistical Learning Theory
A Short Introduction to Learning with Kernels
Bayesian Kernel Methods
An Introduction to Boosting and Leveraging
An Introduction to Reinforcement Learning Theory: Value Function Methods
Learning Comprehensible Theories from Structured Data
Algorithms for Association Rules
Online Learning of Linear Classifiers.
Mendelson, Shahar, editor., Editor,
Smola, Alexander J. editor., Editor,
SpringerLink (Online service)
Other format:
Printed edition:
Printed edition:
Publisher Number:
10.1007/3-540-36434-X doi
Access Restriction:
Restricted for use by site license.