Franklin

Welding and Cutting Case Studies with Supervised Machine Learning [electronic resource] / by S. Arungalai Vendan, Rajeev Kamal, Abhinav Karan, Liang Gao, Xiaodong Niu, Akhil Garg.

Author/Creator:
Vendan, S. Arungalai, author., Author,
Edition:
1st ed. 2020.
Publication:
Singapore : Springer Singapore : Imprint: Springer, 2020.
Series:
Engineering (SpringerNature-11647)
Engineering Applications of Computational Methods, 2662-3366 ; 1
Engineering Applications of Computational Methods, 2662-3366 ; 1
Format/Description:
Book
1 online resource (IX, 249 pages) : 257 illustrations, 192 illustrations in color.
Subjects:
Manufactures.
Machine learning.
Engineering-Data processing.
Materials science.
Local subjects:
Manufacturing, Machines, Tools, Processes. (search)
Machine Learning. (search)
Data Engineering. (search)
Characterization and Evaluation of Materials. (search)
System Details:
text file PDF
Summary:
This book presents machine learning as a set of pre-requisites, co-requisites, and post-requisites, focusing on mathematical concepts and engineering applications in advanced welding and cutting processes. It describes a number of advanced welding and cutting processes and then assesses the parametrical interdependencies of two entities, namely the data analysis and data visualization techniques, which form the core of machine learning. Subsequently, it discusses supervised learning, highlighting Python libraries such as NumPy, Pandas and Scikit Learn programming. It also includes case studies that employ machine learning for manufacturing processes in the engineering domainches The book not only provides beginners with an introduction to machine learning for applied sciences, enabling them to address global competitiveness and work on real-time technical challenges, it is also a valuable resource for scholars with domain knowledge.
Contents:
Supervised machine learning in magnetically impelled arc butt welding (MIAB)
Supervised machine learning in cold metal transfer (CMT)
Supervised machine learning in friction stir welding (FSW)
Supervised machine learning in wire cut electric discharge maching (WEDM)
Appendix: coding in python, numpy, panda, scikit-learn used for analysis with emphasis on libraries.
Contributor:
Kamal, Rajeev. author., Author,
Karan, Abhinav. author., Author,
Gao, Liang, author., Author,
Niu, Xiaodong, author., Author,
Garg, Akhil. author., Author,
SpringerLink (Online service)
Contained In:
Springer Nature eBook
Other format:
Printed edition:
Printed edition:
Printed edition:
ISBN:
978-981-13-9382-2
9789811393822
Publisher Number:
10.1007/978-981-13-9382-2 doi
Access Restriction:
Restricted for use by site license.
Loading...
Location Notes Your Loan Policy
Description Status Barcode Your Loan Policy