The Wiley Handbook of Evolutionary Neuroscience.

Other records:
Shepherd, Stephen V.
Hoboken : John Wiley & Sons, Incorporated, 2017.
Wiley Clinical Psychology Handbooks Ser.
Wiley Clinical Psychology Handbooks Ser.
1 online resource (596 pages)
Electronic books.
Title Page
Copyright Page
List of Contributors
Chapter 1 The Brain Evolved to Guide Action
1.1 Introduction
1.2 William James and the Functionalist Tradition
1.3 Ramon y Cajal's Functionalist Neuroscience
1.4 Embodied Cognition
1.4.1 Interactive Explanation and Dynamical Systems
1.4.2 Changing the Role of Representations
1.4.3 Intelligent Bodies, Scaffolded Environments, Fuzzy Borders
1.5 Embodied Cognition and the Brain
1.5.1 Brains Evolve through Elaboration
1.5.2 Cognition Does Not Respect Boundaries
1.5.3 Brains Function to Guide Adaptive Action
1.6 Conclusion
Chapter 2 The Evolution of Evolutionary Neuroscience
2.1 The Evolution of "Evolution"
2.2 Evolution of "the Nervous System"
2.3 New Understandings of Brain Structure
2.4 New Understandings of Brain Size
2.5 Comparative Brain Mapping: Wally Welker's School of Cortical Cartography
2.6 The Human's Place in Nature: All Brains Are Not Made the Same
2.7 Conclusions and Perspectives
Chapter 3 Approaches to the Study of Brain Evolution
3.1 Introduction
3.2 The Structure of the Mammalian Radiation
3.3 What We Learn from the Fossil Record
3.4 Deducing Brain Evolution from the Comparative Studies of the Brains of Extant Mammals
3.5 Understandings of Brain Evolution Based on Developmental Patterns and Biological Constraints
3.6 Studies of Brain Development
Chapter 4 Intraneuronal Computation: Charting the Signaling Pathways of the Neuron
4.1 Introduction: The Centrality of Intracellular Signaling
4.2 How Signaling Resources Evolved in the Transition from Prokaryotic to Eukaryotic
4.2.1 Recombination Is a Central Theme of Signaling System Evolution.
4.3 Four Evolutionary Roots of Eukaryotic Signaling Systems
4.3.1 The Prokaryotic "Detection of Solutes"
4.3.2 Counteracting the Donnan Effect: "Sensing the Solvent"
4.3.3 The Interface between Signaling and Cell‐Cycle Control
4.3.4 The Cytoskeleton and Endocytic Matrix: Signaling Incorporation of Mechanical and Membrane‐Remodeling Systems
4.4 Fundamental Signaling Pathways in Neuronal Development and Physiology
4.4.1 The Prototypical Signaling Pathway
4.4.2 The Catalog of Eukaryotic Signaling Pathways
4.5 Intracellular Signaling at the Synapse
4.5.1 Structural Components of Excitatory (Post)Synaptic Sites
4.5.2 Local Protein Synthesis in Spines: Molecular Markers of Plasticity
4.6 Concluding Comments: Molecular Tools for the Evolution of "Social Brains"
Appendix: Catalog of Eukaryotic Signaling Pathways
4.A.1 Pathways of Early Development
4.A.2 Mid Development and Organogenesis
4.A.3 Tissue Physiology
4.A.4 Stress and Criticality (Apoptosis and Necrosis)
Chapter 5 The Evolution of Neurons
5.1 Introduction
5.2 Non-neuronal Reflexes in Porifera
5.3 The Ctenophore Enigma
5.4 The Cnidarian Nervous System
5.4.1 Complex Behavior and the Anthozoan Nerve Net
5.4.2 Mechanisms of Neuronal Integration in Medusae
5.4.3 Interactions between Epithelia and Nerves
5.4.4 Schyphozoa and Cubozoa Compared with the Hydrozoa
5.4.5 Summary
5.5 The Evolution of Neural Integration
5.5.1 Requirements for an Integrative Nervous System
5.5.2 Integration in a Modular Nervous System
5.6 The First Neurons
Chapter 6 The First Nervous System
6.1 Introduction
6.2 The Ambiguity of Nervous System Origins
6.3 The First Bilaterian Nervous System
6.3.1 Diversity of Bilaterian Nervous Systems.
6.3.2 Conserved Mechanisms for Anteroposterior Patterning of the Bilaterian Central Nervous System
6.3.3 Conserved Mechanisms for Dorsoventral Pattering of the Bilaterian Central Nervous System
6.3.4 Common Patterning Mechanisms for Complex Brain Circuitry?
6.4 The First Metazoan Nervous System: Insights from Cnidarians
Chapter 7 Fundamental Constraints on the Evolution of Neurons
7.1 Introduction
7.2 Noise as a Fundamental Limit on Axon Diameter
7.3 Molecular Noise as a Fundamental Limit on Wiring Density
7.4 Higher Body Temperature, Lower Neuronal Noise: Why Warmer Brains Are More Reliable
7.5 Channel Noise and Channelopathies
7.6 Are There Other Biophysical Limits to Axon Size?
7.7 Is Behavioral Variability the Cause of Molecular Noise?
7.8 Channel Noise Impacts Crucial AP Properties
7.9 Effects of Channel Noise Spread to Other Neurons
7.10 The Brain Must Balance Noise vs. Metabolic Cost
7.11 Homeostatic Limits on Neurite Anatomy
7.12 Conclusion
Chapter 8 The Central Nervous System of Invertebrates
8.1 Organizing Principles of Nervous System Architecture
8.1.1 Evolutionary Origin of the Nervous System
8.1.2 Central and Peripheral Nervous System
8.1.3 Subepithelial, Basiepithelial and Invaginated Nervous Systems
8.1.4 Neuropil Compartmentalization
8.2 Invertebrate Nervous Systems: A Brief Comparative Overview
8.2.1 Invertebrate Deuterostomes
8.2.2 Lophotrochozoans
8.2.3 Ecdysozoa
8.3 Morphological Building Blocks of the Invertebrate CNS
8.3.1 Synapses
8.3.2 Neurons
8.3.3 Glia
8.4 Neuronal Circuitry and CNS Function: Insights from Invertebrate Nervous Systems
8.4.1 Oscillators, Central Pattern Generators, and Command Centers
8.4.2 Swimming Activity in Jellyfish
8.4.3 Locomotion in Leeches.
8.4.4 Swimming in Molluscs
8.4.5 CPGs of Locomotion in Arthropods
8.4.6 Information Processing in the Insect Optic Lobe
Chapter 9 Nervous System Architecture in Vertebrates
9.1 Introduction
9.2 Natural Brain Units: Vesicles/Neuromeres and Longitudinal Columns
9.3 The Ancestral Bauplan of the Adult Craniate Brain
9.3.1 Hindbrain Cranial Nerves
9.3.2 Cerebellum
9.3.3 Midbrain
9.3.4 Forebrain
9.3.5 Descending Premotor Systems
9.3.6 The Agnathan Situation
9.4 Comparative Brain Architecture in Craniates
9.4.1 Comparative Brain Architecture in Amniotes
9.4.2 Comparative Brain Architecture in Anamniotes
9.5 Epilogue
Chapter 10 Neurotransmission-Evolving Systems
10.1 Introduction
10.2 Unicellulars and Neurotransmitters: The Concept of Biomediators
10.3 Sponges: The Trappings of Neurotransmission without the Neurons
10.4 Cnidarians: Neurotransmission Enters the Stage
10.5 Neurotransmission Comes of Age
10.6 The Role of Glia in Neurotransmission
10.7 Conclusion
Chapter 11 Neural Development in Invertebrates
11.1 Overview of Invertebrate Development
11.2 Basal Diplobalastic Metazoa with Nervous Systems
11.2.1 Cnidaria (Including Jellyfish, Corals, Anemones)
11.2.2 Ctenophores (Comb Jellies)
11.3 Lophotrochozoa
11.3.1 Platyzoa
11.3.2 Lophophorata and Endoprocta
11.3.3 Trochozoa
11.4 Ecdysozoa
11.4.1 Nematodes (Round Worms)
11.4.2 Arthropods
11.4.3 Onychophora (Velvet Worms)
11.5 Deuterostomia
11.5.1 Echinoderms
11.5.2 Hemichordata (Acorn Worms)
11.6 Invertebrate Chordates
11.6.1 Cepahalochrodates (Lancelets or Amphioxus)
11.6.2 Tunicates (Ascidians or Sea Squirts)
11.7 Conclusions
Chapter 12 Forebrain Development in Vertebrates: The Evolutionary Role of Secondary Organizers
12.1 Introduction
12.2 The Prosomeric Model of Brain Regionalization
12.2.1 The Prosomeric Model and Secondary Organizers
12.2.2 Alternatives to the Prosomeric Model
12.2.3 Detailed Morphology of the Prosomeric Forebrain
12.3 Secondary Organizers and Forebrain Topology
12.3.1 Floor Plate
12.3.2 Roof Plate
12.3.3 The Anterior Neural Ridge
12.3.4 The Prechordal Plate
12.3.5 The Subpallial Organizer
12.3.6 Potential Organizers in the Hypothalamus
12.3.7 The Zona Limitans Intrathalamica
12.3.8 The Isthmic Organizer
12.4 The Early Evolution of the Chordate Forebrain
12.4.1 Early Chordates
12.4.2 Early Craniates and Vertebrates
Chapter 13 Brain Evolution and Development: Allometry of the Brain and Arealization of the Cortex
13.1 Introduction
13.2 Basic Vertebrate Brain Allometry
13.2.1 "Allometry of What?" or "What Should We Measure?"
13.2.2 Brain Scaling, Macro Scale
13.2.3 Individual Variability
13.2.4 Scaling of Cortical Areas
13.2.5 Summary of Allometry, Focusing on the Cortex
13.3 Evolutionary Developmental Models for the Cerebral Cortex
13.3.1 Changes in Cortical Development across Species
13.3.2 Cross-Cortex Gradients in Neurogenesis
13.3.3 Cross-Species and Cross-Cortex Differences in Neuron Number Arise from the Same Mechanism
13.3.4 Interaction with Other Mechanisms
13.4 Structural and Functional Implications of Gradients in Cortical Neurogenesis
13.5 In Conclusion
Chapter 14 Comparative Aspects of Learning and Memory
14.1 Introduction
14.2 General Aspects of Learning and Memory
14.3 Learning and Memory in Invertebrates
14.4 Learning and Memory in Vertebrates.
14.5 Differences and Commonalities.
Description based on publisher supplied metadata and other sources.
Local notes:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2021. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Other format:
Print version: Shepherd, Stephen V. The Wiley Handbook of Evolutionary Neuroscience
Location Notes Your Loan Policy
Description Status Barcode Your Loan Policy