Exploration of the Solar System by Infrared Remote Sensing.

Hanel, R. A.
Cambridge : Cambridge University Press, 2003.
1 online resource (536 pages)
2nd ed.

Location Notes Your Loan Policy


Other records:
Planets -- Remote sensing.
Electronic books.
A revised edition describing remote sensing of the Solar System through studies of infrared radiation.
Introduction to first edition
Introduction to second edition
1 Foundation of radiation theory
1.1 Maxwell's equations
1.2 Conservation of energy and the Poynting vector
1.3 Wave propagation
1.4 Polarization
1.5 Boundary conditions
1.6 Reflection, refraction, and the Fresnel equations
1.7 The Planck function
1.8 The Poynting vector, specific intensity, and net flux
2 Radiative transfer
2.1 The equation of transfer
a. Definitions and geometry
b. Microscopic processes
c. The total field
d. The diffuse field
2.2 Formal solutions
2.3 Invariance principles
a. Definitions
b. The stacking of layers
c. Composite scattering and transmission functions
d. Starting solutions
2.4 Special cases
a. Nonscattering atmospheres
b. Optically thin atmospheres
2.5 Scattering atmospheres
the two-stream approximation
a. Single scattering phase function
b. Separation of variables
c. Discrete streams
d. Homogeneous solution
e. Outside point source
3 Interaction of radiation with matter
3.1 Absorption and emission in gases
a. The old quantum theory
b. The Schrödinger equation
c. Energy levels and radiative transitions
3.2 Vibration and rotation of molecules
3.3 Diatomic molecules
a. Vibration
b. Rotation
c. Vibration-rotation interaction
d. Collision-induced transitions
3.4 Polyatomic molecules
a. Vibration
b. Rotation
c. Vibration-rotation transitions
3.5 Line strength
3.6 Line shape
3.7 Solid and liquid surfaces
a. Solid and liquid phases
b. Complex refractive indices
3.8 Cloud and aerosol particles
a. Asymptotic scattering functions
b. Rigorous scattering theory
general solution
c. Particular solutions and boundary conditions
d. The far field.
phase function and efficiency factors
4 The emerging radiation field
4.1 Models with one isothermal layer
a. Without scattering
b. With scattering
4.2 Models with a vertical temperature structure
a. Single lapse rate
b. Multiple lapse rates
4.3 Model with realistic molecular parameters
5 Instruments to measure the radiation field
5.1 Introduction to infrared radiometry
5.2 Optical elements
5.3 Diffraction limit
5.4 Chopping, scanning, and image motion compensation
a. D.C. radiometers
b. Chopped or a.c. radiometers
c. Image motion compensation
5.5 Intrinsic material properties
a. Absorbing and reflecting filters
b. Prism spectrometers
c. Gas filter, selective chopper, and the pressure modulated radiometer
5.6 Interference phenomena in thin films
a. Outline of thin film theory
b. Antireflection coatings
c. Beam dividers
d. Interference filters and Fabry-Perot interferometers
5.7 Grating spectrometers
5.8 Fourier transform spectrometers
a. Michelson interferometer
b. Post-dispersion
c. Martin-Puplett interferometer
d. Lamellar grating interferometer
5.9 Heterodyne detection
5.10 Infrared detectors in general
5.11 Thermal detectors
a. Temperature change
b. Noise in thermal detectors
c. Temperature to voltage conversion
5.12 Photon detectors
a. Intrinsic and extrinsic semiconductors
b. Photoconductors and photodiodes
c. Responsivities
d. Noise in photon detectors
e. Circuits for photon detectors
f. Detector arrays
5.13 Calibration
a. Concepts
b. Middle and far infrared calibration
c. Near infrared calibration
d. Wavenumber calibration
5.14 Choice of measurement techniques
a. Scientific objectives
b. Instrument parameters
6 Measured radiation from planetary objects up to Neptune.
6.1 Instrument effects
6.2 The terrestrial planets
6.3 The giant planets
6.4 Titan
6.5 Objects without substantial atmospheres
a. Tenuous atmospheres
b. Surfaces
7 Trans-Neptunian objects and asteroids
7.1 Pluto and Charon
7.2 Comets
7.3 Asteroids
8 Retrieval of physical parameters from measurements
8.1 Retrieval of atmospheric parameters
8.2 Temperature profile retrieval
a. General consideration
b. Constrained linear inversion
c. Relaxation algorithms
d. Backus-Gilbert formulation
e. Statistical estimation
f. Limb-tangent geometry
8.3 Atmospheric composition
a. Principles
b. Feature identification
c. Correlation analysis
d. Abundance determination
e. Profile retrieval
f. Simultaneous retrieval of temperature and gas abundance
g. Limb-tangent observations
8.4 Clouds and aerosols
a. Small absorbing particles
b. Titan's stratospheric aerosol
8.5 Solid surface parameters
a. Surface temperature
b. Thermal inertia
c. Refractive index and texture
8.6 Photometric investigations
a. Introduction
b. The Bond albedo
c. Thermal emission
9 Interpretation of results
9.1 Radiative equilibrium
a. Governing principles
b. The solar radiation field
c. Thermal radiation and the temperature profile
d. General atmospheric properties
9.2 Atmospheric motion
a. Governing equations
b. Mars
c. The outer planets
d. Venus
9.3 Evolution and composition of the Solar System
a. Formation of the Solar System
b. Evolution of the terrestrial planets
c. Evolution of the giant planets
9.4 Energy balance
a. The terrestrial planets
b. The giant planets
Closing remarks
Appendix 1
A1.1 Vector quantities
Cartesian coordinates
Spherical coordinates
Transformation of coordinates.
A1.2 Spherical Bessel functions
A1.3 Legendre polynomials
Appendix 2
Appendix 3
Description based on publisher supplied metadata and other sources.
Local notes:
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2021. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Conrath, B. J.
Jennings, D. E.
Samuelson, R. E.
Other format:
Print version: Hanel, R. A. Exploration of the Solar System by Infrared Remote Sensing