Franklin

Spectral music design: a computational approach / Victor Lazzarini.

Author/Creator:
Lazzarini, Victor, 1969- author.
Publication:
New York, NY : Oxford University Press, [2021]
Format/Description:
Book
xix, 488 pages : illustrations ; 29 cm
Status/Location:
Loading...

Get It

Details

Subjects:
Computer music.
Computer music -- Computer programs.
Spectral music.
Sound -- Recording and reproducing -- Digital techniques.
CSound (Computer program language).
Python (Computer program language).
Contents:
Machine generated contents note: pt. I BACKGROUND
1. What is the Spectrum?
1.1. Functions and Signals
1.1.1. Functions of Time
1.1.2. Functions of Frequency
1.2. Fundamental Concepts of Spectrum
1.2.1. Periodicity and Pitch
1.2.2. Distributed Spectra
1.2.3. Dynamic Spectra
1.2.4. The Uncertainty Principle
1.3. Psychoacoustic Aspects
1.3.1. The Cochlear Mechanism
1.3.2. Critical Bandwidth
1.3.3. Loudness Perception
1.4. A Provisional Definition
2. A History of the Spectrum
2.1. Principles of Pitch and Scale
2.1.1. The Pythagorean Scale
2.1.2. Just Intonation
2.1.3. Musical Instruments
2.2. Classical Physics
2.2.1. Frequency and Pitch
2.2.2. Harmonics
2.2.3. Strings and the Wave Equation
2.2.4. Chladni Figures
2.2.5. Fourier's Theorem
2.2.6. Partials and Hearing
2.3. Helmholtzian Theory
2.3.1. Musical Tones and Noise
2.3.2. Resonators and Other Analytical Instruments
2.3.3. Theory of Spectral Hearing
2.3.4. Musical Timbre
2.3.5. Rayleigh's Theory of Sound
2.4. Twentieth Century
2.4.1. Electronic Instruments and Signal Processing
2.4.2. Electronic Music
2.4.3. Computer Music
3. Fundamental Aspects of Audio and Music Signals
3.1. The Nature of Audio Signals
3.1.1. Real Signals
3.1.2. Instantaneous Frequency and Phase
3.2. Manipulating Analogue Audio Signals
3.2.1. Non-Linear Distortion
3.2.2. Noise and Signal Level
3.2.3. Modulation
3.2.4. DC Offset
3.3. Discrete Signals
3.3.1. Sampling
3.3.2. The Discrete-Time Baseband
3.3.3. Digital Audio
pt. II TECHNIQUES
4. Continuous and Discrete Spectra
4.1. The Fourier Series
4.1.1. Even and Odd Functions
4.1.2. Interpreting the Fourier Formula
4.1.3. The Fourier Series of a Square Wave
4.1.4. Complex Representation
4.2. The Fourier Transform
4.2.1. The Inverse Fourier Transform
4.2.2. Amplitude and Phase Spectra
4.2.3. The Spectra of Real Signals
4.2.4. The Spectra of Fundamental Signals
4.3. Convolution
4.3.1. Discrete Convolution
4.4. Sampling in Time and Frequency
4.4.1. Finite-Time Signals
4.4.2. Hard-Sync Waveforms
4.5. Classic Waveforms
4.5.1. The Sawtooth
4.5.2. Triangle Wave
4.5.3. Pulses
4.5.4. Additive Synthesis
4.6. The Fourier Spectrum
5. Discrete Time, Discrete Frequency
5.1. The Discrete Fourier Transform
5.1.1. Programming the DFT
5.1.2. Interpreting the DFT
5.1.3. Analysis Windows
5.2. The Fast Fourier Transform
5.2.1. Radix-2 FFT
5.2.2. ReaTto-Complex and Complex-to-Real Transforms
5.2.3. Other Radices
5.3. Discrete-Time Convolution
5.3.1. Direct Convolution
5.3.2. Fast Convolution
5.3.3. Partitioned Convolution
5.3.4. Multiple Partitions
5.3.5. Spectral Design Applications
5.4. Time-Varying Convolution
5.4.1. Implementation
5.4.2. Spectral Design Applications
5.5. The Discrete Spectrum
6. Time-Frequency Processing
6.1. Sub-band Signals
6.1.1. Designing a Bandpass Filter
6.1.2. The Phase Vocoder
6.2. The Short-Time Fourier Transform
6.2.1. Analysis Frame Rate
6.2.2. Phase Alignment
6.2.3. Resynthesis
6.3. Spectral Analysis-Synthesis
6.3.1. Phase Difference Method
6.3.2. Instantaneous Frequencies
6.3.3. One-Sample Hopsize
6.3.4. Sliding Transform
6.3.5. Phase Integration
6.4. Streaming Spectral Processing
6.4.1. The Spectral Analysis
Synthesis Class
6.4.2. Spectral Signals in Csound
6.5. Spectral Manipulation
6.5.1. Filters
6.5.2. Blurring
6.5.3. Tracing
6.5.4. Stenciling
6.5.5. Mixing and Demixing
6.5.6. Frequency Scaling and Shifting
6.5.7. Spectral Envelope
6.5.8. Morphing
6.5.9. Spectral Delays
6.6. Timescale Modifications
6.6.1. Phase Locking
6.6.2. Pitch and Timescale
6.6.3. Csound Opcodes
6.7. The Hilbert Transform
6.8. The Dynamic Spectrum
7. The Spectra of Filters
7.1. Filters and Delays
7.1.1. Pure Delays
7.1.2. Inverse Comb Filter
7.2. The Z-Transform
7.2.1. Complex Polynomials
7.2.2. Zeros
7.2.3. The Z-Transform and the DFT
7.3. Zeros on the Complex Plane
7.3.1. First-Order Filters
7.3.2. Second-Order Filters
7.3.3. Minimum Phase
7.3.4. Linear Phase
7.4. Filter Design
7.4.1. Time-Domain Method
7.4.2. Frequency-Domain Method
7.4.3. Design Example
7.5. Feedback
7.5.1. Poles
7.5.2. Resonators
7.5.3. Stability
7.5.4. Phase Response
7.6. Recursive Filter Design
7.6.1. Parallel and Series Connections
7.6.2. Modeling Physical Systems
7.6.3. String Resonators
7.6.4. Allpass Filters
7.6.5. The Channel Vocoder
7.7. Time-Varying Filters
7.7.1. Allpass Phasers
7.7.2. Audio-Rate Coefficient Modulation
7.7.3. Delay Time Modulation
7.8. A Generalized Concept of Spectrum
8. Non-Linear Synthesis of Spectra
8.1. Closed-Form Synthesis Formulae
8.1.1. Generalized Summation Methods
8.2. Frequency and Phase Modulation Synthesis
8.2.1. Phase Modulation
8.2.2. Signal Bandwidth and Aliasing
8.2.3. Carrier to Modulator Ratio
8.2.4. Implementation
8.2.5. Frequency Modulation
8.2.6. Splitting Sidebands
8.2.7. Feedback
8.2.8. Complex PM
8.2.9. Exponential FM
8.3. Phase Distortion Synthesis
8.3.1. Vector Phase Shaping
8.4. Modified Frequency Modulation Synthesis
8.4.1. Phase-synchronous ModFM
8.4.2. Extended ModFM
8.5. Polynomial Waveshaping
8.5.1. Dynamic Spectra
8.5.2. Normalization
8.5.3. Implementation
8.5.4. Chebyshev Polynomials
8.5.5. Quadrature Waveshaping
8.6. Other Distortion Functions
8.7. Adaptive Modulation Methods
8.7.1. Adaptive Frequency Modulation
8.8. The Non-Linear Spectrum
9. Noise
9.1. Random Processes and Noise Signals
9.1.1. Centroid and Bandwidth
9.1.2. Probability Distribution and Density
9.1.3. Power Spectrum Density
9.1.4. Fractional Noise
9.1.5. Spectral Moments
9.2. Computing Noise
9.2.1. Random Number Generators
9.2.2. Sample and Hold
9.2.3. Heterodyning
9.2.4. Filtered Noise
9.2.5. Wavetables
9.3. Grain
9.3.1. Asynchronous Granular Synthesis
9.3.2. Wavelets
9.3.3. Matching Pursuit
9.4. The Spectral Envelope Revisited
9.4.1. Linear Prediction
9.4.2. Computing Prediction Coefficients
9.4.3. Synthesis
9.4.4. Spectral Representations
9.4.5. Streaming Linear Prediction
9.5. Spectral Models
9.5.1. Partial Tracking
9.5.2. Peak Identification
9.5.3. Peak Interpolation
9.5.4. Track Formation
9.5.5. Frequency and Phase
9.5.6. Synthesis
9.5.7. Residual Extraction
9.5.8. Modeling the Residual
9.5.9. Transients
9.5.10. Streaming Partial Track Processing
9.5.11. ATS
9.6. The Non-Deterministic Spectrum
pt. III DESIGN
10. Spectral Design in Music
10.1. The Emergence of Spectral Color as a Structuring Device
10.1.1. Chords and Spectra
10.1.2. Instrumentation and Spectra
10.2. Audio Technology
10.2.1. Recording and Broadcasting as Carriers of Spectral Information
10.2.2. Changes in Instrumental Sound
10.2.3. The Mechano-Acoustic and the Electro-Acoustic
10.3. Electronic Music
10.3.1. The Feedback on Instrumental Writing
10.3.2. Electric Jazz, Rock, and Pop
10.3.3. Spectromorphology
10.3.4. Spectral Hearing
10.4. Computer Music
10.4.1. Risset's Catalog
10.4.2. Case Studies
10.5. The Musical Spectrum
11. Computer Sound Design
11.1. Additive Synthesis
11.1.1. Recursion
11.2. Non-Linear Distortion
11.2.1. Operator FM
11.2.2. Synthesis of Resonance
11.3. Source-Modifier Techniques
11.3.1. String Machines
11.3.2. The Vocoder
11.4. Granular Processing
11.5. Analysis-Synthesis
11.5.1. Spectral Envelopes
11.5.2. Morphing
11.5.3. Timescaling
11.5.4. Spectral Delays
11.6. Design Methods
12. Composing the Spectrum
12.1. Spectral Music-Making
12.1.1. Metaphors
12.1.2. Terminology
12.1.3. Realtime Systems and Performance
12.1.4. Physical and Virtual Space
12.1.5. Approaches to Composing the Spectrum
12.2. The Composition of Mouvements
12.2.1. The Generative Principle
12.2.2. Variations
12.2.3. Other Variants
12.2.4. Macrostructure
12.2.5. Discussion
12.3. Conclusion: the Spectral Playground.
Notes:
Includes bibliographical references and index.
ISBN:
0197524028
9780197524022
019752401X
9780197524015
OCLC:
1233163361
Publisher Number:
99988082856